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Abstract

Workflow and data integration engineering are complex and expensive activities. Adding a new
workflow to a system often requires lengthy and repeated rounds of software engineering. The time
and cost of this work creates an undesirable barrier between users and new system functionality.
In the process of creating new workflow, developers frequently reproduce the queries and updates
already present in other parts of the system. For example, many IT organizations have a forms-
based implementation that allows a user to perform the steps of a workflow by hand. This form
system can be leveraged in the creation of workflow procedures. In this paper we describe a system,
Workflow By Example (WbE), where developers create workflows (or data integration queries)
by demonstrating a workflow to the system. WbE observes the demonstration and automatically
constructs a corresponding general workflow script. A performance evaluation of WbE shows that
its learning algorithm scales well, and a user study show that if a batch update contains more than
8 form changes, WbE is more efficient to use than manual updates.





1 Introduction

Batch updates to databases are generally implemented using a combination of workflow tools and
“extract, transform, and load” (ETL) tools. The addition of a new batch update procedure using
these tools requires careful consideration of data cleaning, duplicate record elimination, record
linkage, and other issues. Thus, in general, systems are engineered such that “point” updates
are handled manually via a form system, and very large updates are handled through workflows.
Medium sized updates (between, say, 2 and 50 updates at once, possibly adding up to thousands
of updates over time) are often left unsupported. These medium sized updates are therefore done
manually through the form system, a process that is slow, expensive, and error prone.

To understand more about ad-hoc batch updates, we interviewed the administrator of a local
departmental website. This administrator frequently receives emails requesting lists of changes to
the website: combinations of additions, modifications, and deletions of information about employ-
ees, events, documents, and more. For example, consider a simple workflow problem where an
administrator is given the task of updating a list of office assignments following a recent depart-
mental office shuffle. The administrator received a spreadsheet with rows containing the first name,
last name, old office location, and new office location for each person who had moved. Since no
batch update facility for office locations was available, the administrator was forced to perform the
set of updates manually, i.e., one at a time through a form interface.

Generally, when a list of changes is short, an administrator will simply make the updates using
the form interface. However, if a list is very long, or the administrator expects many such updates
over time, the administrator may appeal to a development team to provide a specialized workflow
for the task. Development teams evaluate such appeals, but must balance the cost of creating the
workflow against the expected cost of doing the updates without the workflow. When the cost of
creating a workflow is obviously less than the cost of continuing to perform updates by hand, the
development team will implement it. Inversely, when the cost of doing something by hand is very
low compared to the cost of implementation, the development team will not consider creating the
workflow. In between these extremes are workflows which may be beneficial, but appear relatively
costly to implement. Many systems would benefit from workflows, such as those for handling
medium sized updates, which fall into this ‘workflow gap’, where they would be beneficial, but are
not considered important enough to invest development resources.

In this paper, we propose a system, called Workflow by Example (WbE), that allows a user (a
developer) to createworkflow scriptsby demonstrating the workflow necessary to complete a task
using familiar applications and an example interaction. The system examines the user’s interaction
and generates a parameterized script as a result. The user then supplies a list of additional examples
to evaluate. The script is executed over these examples, and any exceptions are presented to the
user, allowing the user to create new scripts for processing these exceptions. The resulting set of
scripts, called aworkflow program, is then saved for future use. Thus, WbE lowers the cost for
developers to create workflows, allowing developer teams to cost-effectively implement workflows
that would otherwise languish in the ‘workflow gap’.

WbE falls into the general research area of programming by example systems [8]. Program-
ming by example prototypes have been built for many areas: regular expression editing, novice
programming, game design, and many more. These prototypes are characterized by the complex-
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Figure 1:WbE System Architecture. Solid lines indicate data flow. Dashed lines indicate control
flow.

ity of the user interaction (e.g., can the user indicate counter-examples?) and the power of the
learning algorithm (e.g., does it learn disjunction, negation, sequences, etc.). The power of the
learning algorithm directly affects the expressiveness of the programs that can be generated. WbE
provides a relatively simple user interaction (upload a file, demonstrate an example, initiate learn-
ing and execution). Additionally, should WbE encounter inputs that cause a script to fail, the user
is given the opportunity to try recording a new script to handle these failed inputs. The new script
is integrated into the existing script as a form of conditional execution. WbE’s learning algorithm
leverages the input file from the user for hints as to which values in the captured interaction are
meant to be parameters for future execution. The scripts created by WbE’s learning algorithm
accurately reproduce the action in the recorded examples, so each example provided by the user is
guaranteed to execute similarly.

WbE also allows the user the ability to test a script, by initially running it in a ‘preview’ mode,
presenting the successes and failures to the user for review before committing changes to the
database. Preview mode allows users to experiment and debug scripts without changing dozens
or hundreds of production values in a database.

1.1 Architecture

Figure1 illustrates the architecture of the WbE system. Users interact directly with WbE through
the UI by providing input files, examples, and commands (such as “Start Recording”). Users inter-
act indirectly with WbE by completing tasks with an application through a sequence of interactions
with the application. This sequence creates an information exchange between the application and
the application database, which is exchange is logged by the Monitor Module.

Through the WbE UI, the user can provide input to the system for inference and execution,
paste in values copied from the application to describe the output of a task, and initiate script
creation and execution.

When a user initiates script creation, the WbE UI passes the input file, output pasted by the
user, and the captured log to the Learning Module. The module compares the log with the pro-
vided example interaction to create a generalized script for the captured task. After successful
script creation, the system passes the script and the remaining input examples to the Execution
Module, which executes the script on the examples in ‘preview mode’, using transactions to test
the sequence without committing changes to the database. The user reviews the results of execu-
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Figure 2: An example system input containing a list of last names, first names, and new office
numbers.

Figure 3:WbE UI Capture Interface

tion, and commits the successful examples if they are satisfied with them. Exceptions to the script
can be handled by recursively using the WbE interface to define a new script for dealing with the
examples which failed to execute in the first script. Finally, the user can name and store the script
permanently for future use. Shared scripts are available to all users, enabling a form of cooperative
work.

1.2 Example

In this example task, a user must update a set of employee records in a database with new office
room numbers. Figure2 shows part of an example input file that contains a list of employee names
and new office numbers.

The user begins by uploading the input file to the WbE UI, which is a frame in a standard web
browser. The WbE UI responds to the input file by presenting to the user the first example in the
input file: (’Roberson’, ’John’, ’6058’) . The user navigates in the top frame to the
appropriate application. The user then begins task capture by pressing the Start Recording button
(Figure3), causing the WbE system to create a blank log file and begin logging the application’s
database interaction.

Using the first element in the input list, the user performs the office location change task,
exactly as the user normally would. As illustrated in Figures4 through6, the user searches for the
employee by last name, then selects the employee’s details from the search results. For verification,
the user captures the employee’s old office location as output for the workflow by copying the old
office value (‘1058’) from the employee’s record into one of the workflow output fields in the WbE
UI (not shown). The user then updates the office number to the new value (‘6058’) and saves the
changes, completing the task.

Once the first employee has been processed, the user presses Stop Recording to end capture and
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Figure 4:Demonstrating the Task. The user searches for the employee.

Figure 5:Demonstrating the Task. The user selects the employee’s record.

Figure 6:Demonstrating the Task. The user updates the employee’s information.
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Figure 7:WbE Results Page for the demo task.

Figure 8:Details of examples on which the script succeeded, including outputs table.

close the application log. WbE now is ready to generate and preview a script using the prepared
input file, the output values, and the interaction log.

The user initiates script generation and execution by pressing the Preview button, causing the
learning module to generate a script, and execute the script in Preview mode (which executes the
script on each example without actually altering the database). During execution, WbE collects
information about the success and failure of the script with respect to each example.

After execution, the WbE UI presents the user with a results page (Figure7) which summarizes
the status of all input tuples with respect to the script’s success or failure.

For this example, the task yielded 24 successes (including the original example), and 23 failures
(all of which failed at the first step of the script). The user examines the details of execution for
both the successful examples (see Figure8) and those that failed at the first step (see Figure9).
The failed inputs were the result of including employees in the input file that were not yet in
the database (causing the script to fail when it attempted to look up a non-existant employee).
However, the reason for the failure is not immediately visible to the user, as the interface indicates
only that the examples failed during the first step of script execution. To discover the reason for
failure, the user walks through the workflow manually, finding that searching for the employees
in the list of failures turns up nothing. To handle the examples for missing employees, the user
presses the Make a New Rule button on the preview page. This action recursively calls WbE to
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Figure 9:Details of examples on which the script failed.

handle the failed input. Thus, a new WbE window appears with the application’s home page at
the top and the WbE UI recording controls (Figure3) at the bottom. The first row of the set of
failed examples appears as input for driving the new task demonstration. Beginning by pressing
the Start Recording button, the user proceeds through the steps described earlier, replacing the
original demonstration of looking up and editing an employee with a demonstration of adding a
new employee to the database using the application. After committing all successful changes, the
user saves the workflow program. The program consists of two scripts: a script to handle office
modification of existing employees and a script to handle adding new employees. The second script
is only run for examples which the first script fails to process successfully, effectively creating a
conditional execution depending on whether a given employee exists in the database.

1.3 Research Issues and Scope

This section describes the research issues that guided the design and implementation of WbE.
Additional open research issues are discussed in the conclusion.

1.3.1 Access Point to Application Behavior

WbE uses the connector between the user’s application and the supporting database as an access
point. This access point allows WbE to log every interaction between the application and database,
filtered through the logic of the application. The log contains the raw SQL requests as they passed
from the application to the database, and the results sets that are passed back. The capture is
described in more detail in Section3. Compared to other access points, such as the HTML re-
quests and responses, SQL logs contain precise, typed and formatted information. WbE is the only
programming by example system to use the DBMS connector as an access point.
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1.3.2 Expressive Power of Learning Module

The goal of WbE is to learn a generalized program from log and the set of input strings that
informed the interaction captured in the log. Since the logs are potentially large, the complexity of
the learning algorithm is a signficant bottleneck. To this end, we use an inductive algorithm that
generalizes only the parameter values of queries and updates that appear in the log. The algorithm
allows a script to reproduce database interactions, for each input, which have no internal loops
or conditionals. Conditionals are captured through script exception handling, allowing unhandled
examples from one script to be passed to another, but are not represented directly in the learning
algorithm itself.

1.3.3 Benefits to the User

WbE would not be useful if it performed worse than doing the tasks by hand. WbE is designed
to benefit users even for tasks requiring only a few repetitions. The design includes a lightweight
upload interface, a lightweight recording interface, and previews of updates to prevent errors. An
evaluation of user performance shows that users have no difficulty learning to use WbE. In addition,
the evaluation empirically measures the break even point for using WbE verses manual execution
of a simple task. Further, a performance evaluation of the generated scripts versus equivalent
hand-written Java code shows reasonable performance for medium sized updates.

1.3.4 Scope

The scope of WbE is defined by the algorithm used in the learning module. Each invocation of
the algorithm generates a script for one interaction path through an application. The path contains
the sequence of SQL queries and updates invoked by the application. Users develop workflow
programs that are sets of conditionally executed scripts. The program is driven by a single outer
loop that processes the input file. The algorithm does not, however, learn internal loops.

The above issues and others are discussed in the remainder of the paper. Section2 describes
the overall model of WbE’s operation. Section3 elaborates on the WbE method with respect to our
implementation. Details are provided with respect to engineering requirements, script creation and
execution, exception handling, etc. Section5 describes the experimental framework and results for
system performance experiments and human participant experiments that measure the performance
of the system with respect to learning and execution time, user time, and user errors. Section6
discusses related work. Section7 discusses future work for WbE. Section8 concludes the paper
with a summary of results.

2 Model

WbE operates on lists of input tuples, each of which provides the information necessary to perform
an unknown (to WbE) sequence of actions. The user demonstrates this sequence on the first input
tuple in the list, producing an execution log. The execution log represents an example execution
of a program in a fixed language, containing both the statements that were executed (queries and
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updates) and any results returned. The user may also copy any of the results of their actions into
an example output tuple.

WbE uses the input/output tuples and the execution log to create a program which will (a)
accurately reproduce the execution history the recorded example and (b) work correctly on the
other input tuples. This task is accomplished by comparing the input and output tuple values
to the statement parameters and result values in the execution log and inductively constructing a
generalized program from the log.

2.1 Language of Logs and Programs

The WbE universe assumes a databaseD and a fixed languageU consisting of a set of parameter-
ized statement types. The ten types arebind , update , query , result , find-one-result ,
read-result , commit , rollback , setAutoCommit andend log .

The statementbind( x, y) attempts to unifyx andy, wherex andy are variables or constants.
The result ofbind is successand the associated unified variables, if any, orfailure.

The statementupdate( p, v, u) carries out a parameterized update to a database table,
such as SQL INSERT or DELETE statements. The parameters to anupdate are the column
namesp and valuesv to be assigned to the SQL update expressionu. This allows parameterization
of update values and WHERE clause values. The result ofupdate is eithersuccessandD is
temporarily modified orfailure (for example, due to an exception or integrity constraint violation)
andD is unchanged.

The statementquery( p, v, q) performs an SQL SELECT statement, parameterized in
the same manner asupdate , allowing additional parameterization ofWHEREandORDER BY
clauses.query statements are given unique identifiers to allow them to be associated with the
results that they produce. A successful execution of the query results insuccessand the result set
of the answers to the query. An error during query processing (e.g., a type error on the argument)
results infailure.

The statementread-result( c, d, v) , which appears only in recorded logs, indicates
that the application has read a result row from the results of an SQL query. The tuples describe the
column name (c), data type (d), and value (v) from a result row, as it was read by the application.
A read-result statement also contains an identifier linking it to the query that produced it.
Column values for a given row will only appear in aresult statement if they were actually read
from the row by the application.

The statementfind-one-result( p, r) , which appears only in WbE scripts, takes as
input a result setr returned from aquery call and a query templatep, then attempts to find a
single row in that result set, using the query template tobind column values. The result matching
parameters are tuples consisting of a table column name, a data type string, and a variable or a
value which will be passed tobind . If all three parts of each tuple in the query template are
matched successfully by only one row in the result set,find-one-result returns the matched
row successfully. Otherwise,find-one-result fails.

The statementscommit , rollback andsetAutoCommit represent the execution of the
corresponding SQL statements.

Theend log statement is added to the log when the user selects “Stop Recording.”
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2.2 Log

Execution logs follow a similar format to final WbE programs, with a few additions. Eachupdate
andquery statement in an execution log contains a unique id.

A log L is a sequence of instances ofU . All statements in a log are grounded, that is, the state-
ments do not contain variables. Logs do not containbind or or find-one-result statements.

2.3 Correctness

WbE is given an inputI consisting of a set of tuples. Each tuple represents a sequence of actions to
be performed onD. WbE is also given a set ofexamplesE. Each example is the triple (i, l, o) such
that i ∈ I, l ∈ L, ando is an output tuple. A programP is correct, whereP ⊂ U , if P executed
on everyi does not generate an exception or a failure. This syntactic definition of correctness does
not cover any semantic notion of correctness. A user can easily create a rule that, say, replaces last
names with office numbers. Thus, preview mode (cf. Section3.3.3) is essential for the user to have
confidence in the workflow scripts generated by WbE.

3 Method

This section describes a WbE prototype implementation, including the Monitor, Learning, and
Execution modules. Additionally, the engineering procedure required to connect the prototype to
an application is described.

3.1 Monitor Module

When the user initiates recording of a demonstration, the Monitor Module begins recording a new
log. As the user demonstrates the task, traffic between the application and its support database are
monitored and logged. The Monitor Module currently logs:

• Queries executed byPreparedStatement objects. These appear asquery() actions
in the log.

• Updates executed byPreparedStatement objects. These appear asupdate() actions
in the log.

• Values and column names read byResultSet objects, including the domains of the values.
These appear asread-result() actions in the capture.

• In addition to those mentioned above, calls to
setAutoCommit() , commit() androllback() . These appear unchanged in the log
and give WbE the ability to preview database updates safely.
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As mentioned earlier, queries andResultSet reads are tagged with shared IDs in order to
link them together for execution. The need for this will be explained during the induction step
(Section3.2).

For the example described in the introduction, the Monitor Module recorded the log shown in
Table3.1. This log shows the application searching a database tableemployees for a record
whoselastname column matches the search string (‘Roberson’ ), provided by the user. Next,
a result is read containing the matchinglastname , as well as the associatedfirstname and
eid , the surrogate key for theemployee table. This information is used by the application
to display the results of the search (Figure5). When the user clicks on the search result, the
application generates a new query to get the detailed information about the selected employee.
This query, and the returned values read from the result, are indicated in the log. Finally, the user
makes the change to the employee record and the application performs an update, which is the last
event in the log before the user closes it. The system is now ready to generate a script from this
captured data and the input provided by the user.

query(6623322, [’SELECT * FROM employees WHERE lastname LIKE ’’%’’ || ’,
var(lastname, ’Roberson’), ’ || ’’%’’’]),

read-result(6623322, [value(eid, eid, ’1’), value(firstname, firstname, ’John’),
value(lastname, lastname, ’Roberson’)]),

query(1813781, [’SELECT * FROM employees WHERE eid=’, var(eid, ’1’), ’’]),
read-result(1813781, [value(bio, bio, ’’), value(dept, dept, ’Vehicle’), value(eid, eid, ’1’),

value(email, email, ’jroberson@ardra.com’), value(firstname, firstname, ’John’),
value(lastname, lastname, ’Roberson’), value(mi, mi, ’ ’),
value(office, office, ’1058’), value(phone1, phone1, ’412 281 1346’),
value(phone2, phone2, ’’), value(type, type, ’Staff’)]),

setAutoCommit(’false’),
update(3032088, [’UPDATE employees SET firstname=’, var(firstname, ’John’), ’, mi=’,

var(mi, ’ ’), ’, lastname=’, var(lastname, ’Roberson’), ’, dept=’,
var(dept, ’Vehicle’), ’, type=’, var(type, ’Staff’), ’, office=’,
var(office, ’7100’), ’, phone1=’, var(phone1, ’412 281 1346’),
’, phone2=’, var(phone2, ’’), ’, email=’, var(email, ’jroberson@ardra.com’),
’, bio=’, var(bio, ’’), ’ where eid=’, var(eid, ’1’), ’’]),

commit,
setAutoCommit(’true’),
end_log

Table 1:Log file of the captured task.

3.2 Learning Module

The task for this component of the system is to generate a script based on the input example and
task capture that can then be applied to any similar task. The module begins script creation by
reading the example (the first row) from the input file. This example is our input array,i, and it
will be used to replace the specific values used in the capture log with variables that can be bound to
new values. The workflow output values provided by the user are also put into an array,o. Finally,
the log is read as an array,S, with each query, update, result read, or transaction management
statement making up an element in the array.
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To create a general script from the specific example, the WbE system uses an inductive algo-
rithm, make script, that generalizes the specific information in the example to a set of variable
relationships. Script induction is a process that takes as input the following information: an ar-
ray of input constants,i, and an array of output constants,o, both provided by the user, and the
recorded log,S. It produces: sets of variables,î andô, which will be bound to new inputs and out-
puts during execution, a generalized script,Ŝ, and a set ofresult templates , Q, describing
how each query’s results should be handled. We refer to each element ofS asS1, S2, etc, with a
similar notation for elements of the other arrays and lists.

make script(i, o, S) → (̂i, ô, Ŝ, Q) (1)

Induction begins by creating thêi and ô arrays. These arrays are of the same length as their
counterparts,i ando, with each member being a unique new variable. Additionally, two temporary
lists, r andr̂, are created for storing all tuples read fromResultSet objects. Once the replace-
ment variables and local variable lists have been created, for each actionSi in the capture log,
create a script action,̂Si, according to these rules:

If the action is any ofsetAutoCommit() , commit , or rollback , copy the action
verbatim intoŜi.

If the action is aquery() or anupdate() , copy the action, its ID, and its non-parameterized
contents over tôSi. Then, process the parameters in the action according to the algorithm in
Table3.2.

If the action is aread-result() , process its contents,rj, according to the algorithm in
Table3.2to create its counterpart̂rj, by replacing all result values with variables. Add these
tuples to their respective lists,r andr̂. The action is not copied intôSi.

If the action is anend log , finalize the script and create the result templates,Q, for handling
query results. Result templates are described, below.

3.2.1 Result Templates

Our prototype implementation makes a simplifying assumption about each query in a recorded
log. Namely, it is assumed that each query produces zero or one “useful” result rows. Following
from this assumption, the “useful” result row,rj, from a query provides a template for future
execution in the form of it’s generalized counterpart,r̂j. This template, chosen according to the
algorithm in Table3.2, provides future matching information in itsvalue() tuples, which have
had all recognizable values replaced with variables. At runtime, these variables may be bound
to new input rows (creating constants with which to match query result values). Otherwise, they
will be bound to the query result value of the proper row at runtime, “filling in” values that may
occur later in the workflow script. Due to limitations in the present induction algorithm, if more
than one possible template is found, script creation fails and the user is offered the chance to
attempt to create a script using the next example in the input file, hopefully providing a better
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For eachvar( domain, value) tuple contained in anupdate() or query() action:

1. Attempt to replacevalue by finding a match ini or o. If a match is found, use the corre-
sponding variable from̂i or ô to replacevalue in Ŝi.

2. If no match was found, repeat the search using all local values stored so far inr. Matching
for these values is more restricted, sincedomain must match the data domain of the result,
as well as the value itself. Should a match be found,value will be replaced inŜi with the
appropriate variable from̂r. Additionally, the matching result inr will be flagged as having
been referenced.

3. Finally, if there is still no match, thenvalue is copied intoŜi verbatim.

Table 2:Algorithm for processing parameters inupdate() andquery() tuples

For eachvalue( column, domain, value) tuple in log result tuplerj, create a counterpart in
r̂j:

1. Attempt to replacevalue by finding a match ini or o. If a match is found, thenvalue is
replaced inr̂j by the corresponding value from̂i or ô. If the match was fromo, then the
result will be flagged as having been referenced.

2. If no match was found, thenvalue is considered to be new information. It is given a new
variable inr̂j.

3. Finally, addrj andr̂j to their respective lists.

Table 3:Algorithm for processing parameters inread result() tuples

demonstration. If no template is added toQ, the query is effectively ignored at runtime. Because
theread-result() used to create the template has been matched against the input and output
tuples provided by the user, some relationships may be established which effectively cause the
resulting program to expect a result set value to match the one passed in by the user for all future
steps. This works in addition to matches on valuesquery() and update() to create extra
constraints for row matching during execution. These additional constraints imply that, for our
example, the first name in a result row must match the one in the input tuple, though the user
never specifies this explicitly. Further examples which violate these extra constraints will cause
the script to fail. This has the implication that extra information in the input file may be used to
create constraints that insure a correct workflow.
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To discover the query templateqi ∈ Q for a query, iterate over each tuple inr:

• If rj andqi have non-matching IDs, ignorerj.

• If rj andqi have matching IDs, but thevalue() tuples inrj were not referenced by any
query() or update() , and did not match any values ino, ignorerj.

• If rj andqi have matching IDs, and at least onevalue() tuple inrj was referenced by a
query() or update() , or matched any value ino:

– If no templateqi has been chosen, assignqi to be equal tôrj.

– If qi has already been chosen, then this query produces more than one “useful” answer,
which this algorithm cannot cope with. Script generation fails.

If qi remains unassigned, then no template exists for this query.

Table 4:Algorithm for creating result templates

3.2.2 Implications

This naive induction algorithm is sufficient for dealing with small logs, such as those generated
from simple database management forms using search-based navigation. More complex systems,
such as those which present elements to the user in a dropdown list, produce many more query
results in the execution log. This result ‘noise’ greatly slows down the linear search algorithm
described in Table3.2 as each new value must be compared against all previous results until a
match is found or no results are left. With this in mind, a secondindexedinduction algorithm was
implemented so as to storeread-result tuples in a hash table, indexed by the string value they
produced from the database. These two methods are compared in Section5.

Table3.2.2shows the results from applying this induction procedure to part of the log. At this
point, the execution module is ready to execute the script over the rest of the data in the input file
to generate a preview of the script’s effects.

3.3 Execution Module

Rule execution begins by combining the generalized scriptŜ with new input valuesi. Each variable
in î is bound to it’s new value fromi, propagating this new value throughout the script. The
Execution Module then proceeds to iterate throughŜ, executing each action as follows:

update() actions are executed by creating and executing an SQL string. The string is
created by iterating over each element in theupdate() tuple, combining the raw strings
(in single quotes) with the (quoted) values from eachvar( domain, value) tuple. The
resulting string is executed against the database. If the update should fail for any reason, the
input tuple is marked as having failed at this step and execution halts for the failing example.
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î, ô: (A,B,C) (D)

Ŝ

query(6623322, [’SELECT * FROM employees WHERE lastname LIKE ’’%’’ || ’,
var(lastname, A), ’ || ’’%’’’]),

query(18137981, [’SELECT * FROM employees WHERE eid=’, var(eid, E), ’’]),
setAutoCommit(’false’),
update(3032088, [’UPDATE employees SET firstname=’, var(firstname, B), ’, mi=’,

var(mi, J), ’, lastname=’, var(lastname, A), ’, dept=’, var(dept, G), ’, type=’,
var(type, M), ’, office=’, var(office, C), ’, phone1=’, var(phone1, K),
’, phone2=’, var(phone2, L), ’, email=’, var(email, I), ’, bio=’, var(bio, F),
’ where eid=’, var(eid, H), ’’]),

commit,
setAutoCommit(true)

Q

result-template(18137981, [value(bio, bio, F), value(dept, dept, G),
value(eid, eid, H), value(email, email, I),
value(firstname, firstname, B),
value(lastname, lastname, A),
value(mi, mi, J), value(office, office, D),
value(phone1, phone1, K), value(phone2, phone2, L),
value(type, type, M)]),

result-template(6623322, [value(eid, eid, E), value(firstname, firstname, B),
value(lastname, lastname, A)])

Table 5:Rule and associated variables from inference procedure.

query() actions are executed much likeupdate() actions. A string is built from the
strings andvar() values in thequery() tuple, and the resulting string is executed against
the database. A failure of the query also results in aborting execution for the failing example,
and the input tuple is marked with the step at which it failed.query actions also implicitly
call find-one-result using the result template for this query, which is stored inQ.

find-one-result() is called implicitly after aquery and uses a passed-in result set
and a result template to match against rows in the result set. For a givenvalue( column,
domain, value) tuple in the result template, the value of the column namedcolumn is
read from the result set, and abind is attempted against the value in the result template. If
bind fails for any of the tuples in a template, the row is considered a non-match. If only one
row is found which matches the template, the call tofind-one-result is successful. If
no rows match, or more than one matches the template, the input tuple is marked as having
failed at this step, and execution halts for the failing example.

commit , rollback , and setAutoCommit() are executed immediately (unless the
script is being run in preview mode, which is described later). If one of these actions fail for
any reason, the input tuple is marked as having failed at this step and execution halts for the
failing example.
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3.3.1 Execution Results

As each tuple from the input file is executed, information about its success or failure, and any output
values that have been bound are collected for display to the user. All examples are partitioned into
groups based on the last script action that succeeded. Examples which reach the end of the script
are labeled as successful, and their outputs are stored together in an outputs table. The remaining
groups of examples are labelled as failed.

3.3.2 Rule Failure Example

Not all tuples in the example input file executed successfully. For example, in Figure9, the tuple
(’Bradbury’, ’Mitchell’, ’7158’) , as well as the other 22 failures, failed at the initial
step of the script. This initial step was the query step which performs a search for an employee
based on last name, and none of the 23 failure cases returned a successful match in their result
sets. While in our example all the tuples failed in the same way, many failure modes are possible:
misspelled names, last name collision with different first names, etc. Failed examples are grouped
by the step in the script at which they failed, and can be passed along to the WbE UI if the user
chooses to make a new script for handling them.

3.3.3 Preview Implementation

Rule execution takes place in one of two modes: preview and commit. In preview mode, execution
proceeds normally for all actions except thecommit action. Whencommit is encountered in
preview mode, arollback is executed in its place. As a side effect, this effectively causes each
execution of the script to occur ‘in a vacuum’ with respect to the others, such that later examples
cannot count on the outcome of prior execution. Commit mode is identical to preview mode, except
that it honors thecommit actions, allowing changes to be committed to the database.

4 Engineering Procedure

In this section we document the engineering procedure required to make an application WbE com-
pliant.

4.0.4 Database Driver Replacement

Our implementation uses a modified Java Database Connectivity (JDBC) driver [12] to intercept,
log, and pass along database queries, updates, and results. This driver acts as an intermediary be-
tween the application and the original driver through which it accesses its database. It is necessary
for WbE compatible applications to be configured to use this augmented driver, rather than their
normal one.
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4.0.5 Use of Prepared Statements

To aid WbE in generalizing only the correct portions of logged SQL statements, compatible ap-
plications must interact with the database usingPreparedStatement objects. Leveraging the
existing JDBC API calls for specifying parameter values for portions of SQL statements driver to
mark for replacement only those portions of the query specified by the developer. As a side effect,
this design restricts some of the types of inference that can be done by WbE, as SQL restricts the
use of PreparedStatement parameters to values in SQL updates and queries, not for table or column
names.

4.0.6 Data Domains

The JDBC API within our driver has been extended to include the concept ofdata domainsto
guide the induction algorithm described below. These domains are specified by the developer
using alteredgetX() andsetX() calls ofPreparedStatement andResultSet objects.
For each call togetString() , setString() , etc., the developer specifies an extra string,
indicating the domain to which this value belongs. For example, to fetch a string phone number, the
String pn = rs.getString(pnatt, "phone number"); method is called, where
pnatt is the schema attribute name andphone number is the label of the domain. Using data
domains, WbE can easily differentiate between values expected to be used as, for example, office
numbers, rather than employee ID numbers or telephone extensions. A special ‘null’ domain of
none is understood by WbE to indicate data that WbE should ignore during rule generation. The
none domain can be used to ‘hide’ data from WbE that would be useless to learn. For example,
a form system which maintains data about itself in the same database that it maintains might
mark that all values related to the forms themselves with thenone domain, to prevent WbE from
attempting to match this ‘meta’ form information.

4.0.7 Using Transactions

In working with early prototypes of WbE, we determined that the ability to preview effects of the
tool’s use was critical to user acceptance, since the consequences of script execution can be large.
In order to support WbE’s preview ability, applications must explicitly wrap statements that will
alter the underlying database (such asINSERT, UPDATE, DELETE) with transaction calls via the
JDBC driver. For example, such updates should be preceded by a call to
setAutoCommit(false) and followed by calls tocommit() andsetAutoCommit(true) .
The driver logs these transaction management calls so that the execution module may later use
them to roll back updates when a user wishes to preview the effects before committing to a set
of changes. ExplicitBEGIN, COMMIT, ROLLBACKrequests made via SQL statements are not
supported by this version of WbE.

4.0.8 Result Batching

To preserve logical grouping of results read fromResultSet objects into rows, the logging
driver does not actually log the data read from a particular row until a call is made tonext() or

16



close() . This limitation should encourage developers to group reads fromResultSet object
into batches, followed closely by calls tonext() or close() before values from those objects
are used in further SQL statements.

4.0.9 Limiting Application Logic

WbE has access to application behavior through one mechanism: the JDBC driver. Thus, any
application logic that occurs on the database side of the driver (through stored procedures or other
mechanisms) is handled automatically. Any application logic not visible through the database
interaction which affects query or update parameters (such as math or string operations) will render
WbE unable to learn scripts involving these steps. Future work for WbE may include an API for
revealing application logic to WbE with respect to data transformations.

5 Results

In order to understand the potential impact of WbE, we conducted experiments to measure WbE’s
performance in various learning conditions, in an execution condition, and in comparison with
performing an experimental task “by hand”, using a web-based forms system. A “deployment
evaluation” was also performed, to explore the impact of attempting to use WbE on existing sys-
tems.

5.1 Learning Algorithm Evaluation

As mentioned earlier, the initial induction algorithm used by our prototype performed poorly as
the number of query results increased. To evaluate this, and to compare the iterative induction
method with the hash-based induction method, we compared the script-learning times for both
algorithms in various learning situations. Each algorithm learned a simple script for looking up a
person’s information amongst the results of a query listing all people in the database, using their
first and last name as identifiers, then to collect various pieces of information about the person,
before updating the person’s phone number in the database. The algorithms performed this task in
5 conditions with increasing amounts of ‘result noise’. The 5 experimental conditions contained 0,
25, 50, 100, and 200 non-target results which must be considered by each algorithm. Along with
varying the number of ‘extra’ results that must be handled, each algorithm was run in a ‘best case’
and ‘worst case’ condition, where the target result was either the last result seen (best case), or the
first result seen (worst case).

5.2 Execution Algorithm Evaluation

In addition to understanding learning performance time, we wanted to evaluate the overhead of ex-
ecuting these WbE scripts within an interpretive environment, versus a hand-constructed program
for performing the same task. Using the same ‘look up, gather information, update’ task described
above, a WbE script was constructed and run with varying amounts of ‘result noise’. Additionally,
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Figure 10:Iterative vs. Hashing algorithm in best-case and worst-case learning conditions

a Java program was hand-crafted to mimic the behavior of the WbE script, and measured in the
same conditions.

Results of the learning algorithm evaluation can be seen in Figure10. The graph shows that the
iteration-based induction algorithm can take exponential time in the number of results that it must
consider, a fact that is especially evident in the worst case. Additionally, the hash-based algorithm
takes slightly more time as the number of results that it must store increases, but this effect doesn’t
seem to present a scaling issue.

Results of the execution algorithm evaluation can be seen in Figure11. This graph shows that
the scripting environment overhead adds significant time to each example as the number of ‘noise
results’ increases. Future work will decrease this overhead by improving the handling of noise
results.

5.3 User Experience Evaluation

To understand the potential impact of WbE for users, we conducted a pilot study on 8 human par-
ticipants. The experiment was a between-subject design, conducted by presenting each participant
with the same task of 16 updates to the database, in one of two conditions: either using a form
interface to update the database directly, or using the forms augmented by WbE. The main task
consists of performing two types of updates to the database, all in the same format. Nine of the
16 updates consist of looking up a person in the database and updating their information accord-
ing to the values of a spreadsheet. The people listed in the other 7 updates did not yet exist in
the database, requiring the user to add them, using the forms. Each condition included a training
example to teach users how to perform updates and additions using the forms, in the forms-only
case, and to perform the task using WbE and WbE’s exception handling feature in the WbE case.

Participant performance was measured on completion time and errors. We chose these metrics
to evaluate WbE because, from the user’s point of view, script induction and execution are effec-
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Figure 11:Execution times for WbE script vs. Handwritten Java Program for one example

tively instantaneous. The primary bottleneck to the system is the use of the tool and the class of
scripts that can be generated by our induction procedure. We did not extensively evaluate the user
interface nor the behavior of the system given dirty input; these issues are future work.

Results of our user evaluation revealed an average time of 3.19 minutes to complete the task
with WbE, and an average time of 7.5 minutes to complete the task in the ‘by hand’ condition. A
two-tailed, unequal means, t-tailed test comparing the completion times of the participants indi-
cates that the mean time to complete the tasks is significantly different in the two tasks (p value
< 0.01), and show that WbE provides a significant speed increase over performing the task by
hand. There were no errors made by participants in either condition, so no comparison can be
made between the systems with respect to errors.

The times recorded in our user evaluation show that WbE provided a235% speed increase over
performing 16 updates by hand. From this result, it can be seen that WbE provides a speed increase
over the manual condition after only 8 updates.

5.4 Deployment Evaluation

WbE was deployed on a web-based database forms system as a means to connect two applications.
The first application was a scheduling optimizer, which dealt with constraint-based planning of
events. The second application was a database-backed website which used a set of web-based
forms to maintain the database. The problem that WbE solved was that of connecting these two
applications. When the optimizer made changes to the schedule, the changes could be output in
a format readable by WbE, giving details about the name, location, date, start time, and duration
for each event. The form system for maintaining the schedule website was altered such that it
would produce logs for WbE. Once these two pieces were in place, WbE could be used to create
a workflow program that would take a schedule delta file from the optimizer as input, and would
update the website’s database to reflect the changes that had been made. This deployment resulted
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in some interesting discoveries and solutions about the effective workings of WbE.
The use of WbE as the “glue” to synchronizing two systems revealed a couple of interesting

insights into WbE. The first issue encountered came as a result of the design of the form system
used for maintaining the web site. To facilitate selection of events, the forms displayed all event
names in a list, from which the user would choose. The display of this list resulted in WbE having
to filter out many ‘noise results’ when trying to match the chosen event with the proper row in the
result set. The discovery of this issue led to the hash-based learning algorithm discussed earlier in
the paper.

The source of the second issue was WbE’s learning algorithm itself, and its feature of learning
relationships between spreadsheet inputs and expected values for rows in query results. For exam-
ple, consider an event update where only the location of an event has changed. In this case, WbE
would learn a relationship between the date, start time, and duration listed in the spreadsheet with
that in the database. Future execution of this rule on other updates would fail if any of the three
date, start time, or duration values in the spreadsheet were different from that in the database. This
led to an exponential branching in the number and type of exception cases for each example, as an
example which had a different date would be in a different failure group than an example which
had the same date but a different start time. One way to avoid this situation would be to ensure
that the training example used to teach WbE was one which required changing all four key fields.
In this case, WbE would learn no connection between the spreadsheet values and the initial date,
location, etc. values for the event it is updating.

As it was unlikely or impossible that any event would be both different for all four values, and
also be chosen as the example for WbE, a different solution had to be constructed. This solution
required altering the forms system to have it report the location, date, start time, and duration as
having a data domain of ‘none’, which would cause them to be ignored entirely by WbE. This
change had the benefit of allowing WbE to handle rules for updating these four values. However,
because WbE was forced to ignore these values, it could never usefully reason about them, either.
For instance, a script could not be constructed to output the location, date, start time, or duration
information for a given event. Similarly, any updates made to events through WbE would be forced
to include all four pieces of information, or WbE would simply set them all to a constant value (the
value used in the example). Overall, this issue represents future work WbE in terms of the types of
reasoning it can do about relationships between values, as well as the methods used for grouping
failed examples into common exception cases.

6 Related Work

6.1 Programming by Example Systems

Unlike other Programming by Example (PbE) systems [8], WbE uses an application’s interactions
with its support database as an access point for capturing user behavior. Like some PbE systems
designed for tasks like web browsing [13] and information extraction from the web [2], WbE’s
interface is in the web browser, and the user interacts with it by copying and pasting values between
the application’s web interface and WbE’s web interface. However, while these other systems focus
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on the HTML as the access point for performing inference on the user’s actions, WbE looks to the
actions performed on the database itself, operating on sequences of SQL rather than portions of
HTML.

WbE is similar to programming by example systems like SMARTedit [5], which capture a
sequence of actions in a fashion similar to a macro recorder, then reason on these sequences in
the background. WbE again differs from such systems based on the access point for interaction
capture, but also based on the type of learning used. While SMARTedit uses a formalized version
space algorithm with multiple examples for searching and pruning the generalization space, WbE
currently relies upon a more biased set of heuristics to drive generalization based on only one
example. Lau and Weld [6] discuss an extension to the version space algorithm that may apply to
WbE.

In terms of the examples in this paper, which use web-based forms systems to perform queries
and updates, WbE competes with web-based PbE systems such as Chickenfoot [3]. Both WbE
and Chickenfoot can be used to construct workflows over web-based forms, and both systems use
user interfaces which are embedded in the web browser. The difference between the systems comes
primarily from the access point. Chickenfoot uses textual relationships, combined with the browser
Document Object Model (DOM) to perform information extraction and query submission via web
pages. This method is very complex, requiring strong text parsing, and suffers from brittleness on
systems with interfaces that are dynamic or prone to redesign. On the other hand, WbE’s access
point between the application and database makes information extraction and workflow execution
much easier, thanks to the relatively simple structure of the SQL query language, and programmatic
access available through JDBC.

While participants our pilot produced no errors using WbE, they were using clean data, with
no typos or wrong information. Presently, WbE’s exception mechanism provides some handling
for these types of dirty data, but still allows other types through. Outlier finding, such as described
by Miller and Myers [10], can focus user attention on possible erroneous matches or mismatches
over the inputs provided, assisting them in cleaning up dirty input.

6.2 Workflow and Other Database Systems

Workflow by Example is unique among database manipulation and workflow systems. While it
shares some similarities with QbE [15], such as constructing generalized queries from user exam-
ples, it differs greatly in that user input takes the form of whole sequences of SQL, captured out
of the sight of the user. These sequences are generalized in ways that go beyond data retrieval, to
allow for the creation of workflow scripts.

Other intelligent workflow composition systems, such as [4], combine ontological knowledge
about the inputs and outputs of available workflow services with AI planning techniques to con-
struct workflows. These systems require knowledge-rich descriptions of the available systems, in-
cluding constraints. WbE focuses on creating workflows from captured information at the database
level, requiring a change to low-level driver interactions, rather than high-level workflow descrip-
tions of each component.

Some workflow systems use a process mining [1, 14] approach which is similar to WbE in that
process logs are examined in order to create models of observed behavior. These systems differ
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from WbE in their access points (recorded workflow data, rather than SQL), and in their exception-
learning methods, which require many execution examples to learn conditional structures for a
process graph.

Existing data integration systems, such as Clio [9], use data and schema examination methods
and graphical browsing tools to give developers a visual understanding of the nature of their data
sources and operation mapping. This understanding aids developers in creating functions for con-
verting between schemas. Unlike these tools, WbE lets the user create mappings for each relation
through a familiar interaction, using the existing infrastructure.

Unlike standard workflow development processes [11], tools, or languages [7], WbE puts the
creation of workflow in the hands of the end user, allowing them to construct and automate more
complex behaviors from those built into a given system.

7 Future Work

Our prototype needs improvement in several areas. One problem area stems largely from the
opacity of application logic and user logic with respect to our system’s ability to compare and
generalize values. For example, the prototype does not support any methods of value processing,
such as substring matching. By disallowing substring matches, the prototype cannot associate a
single cell containing “John Doe” with two cells containing “John” and “Doe”. A lack of substring
matching also prevents users from performing ‘lazy searches’ by entering only parts of strings, so
while typical applications allow searching via partial terms, the WbE system would not properly
associate a partial term with a log value. Future work will include giving WbE the ability to parse
and combine both input and database values to deal with data extraction.

Another problem area is the decoupling of WbE from the user browser experience. In partic-
ular, some implementations of navigation in a system are invisible to WbE because they do not
generate database calls. Further work is needed in this area.

In future versions of our WbE system, we plan to remove the Start Recording and Stop Record-
ing buttons, moving towards more of an user observation based model. This step allows for truly
ad-hoc automation, as the system could prompt the user when it believes it has found a pattern that
it can automate.

The WbE user interface also needs improvement. The main issues include user trust and ex-
ploring how WbE can understand the actions and results of a script, as well as how it can inform the
user of the consequences of running a script. This information will help the user to properly man-
age scripts and to have a clear understanding of the result of executing them. Additionally, work
will be done in exploring ways of allowing the user to view and edit the rules created by WbE,
allowing a deeper understanding of WbE scripts, which in turn should allow for greater reuse and
extension. The UI will also be extended to allow for user defined functions, which allows a user to
teach WbE to perform data transformation and constraint checks. These changes, combined with
outlier finding for bringing the user’s attention to unusual examples, WbE should be a system the
user can trust to properly automate workflow.

Finally, the ability to share workflow programs among users will provide a powerful method
for collaborative work processes, and we look forward to exciting results in this area.
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8 Conclusion

Maintaining a database can be a challenge for any organization. While bulk updates can be simpli-
fied by implementing workflow systems, and point updates can be completed with form systems,
many types of updates exist in a ‘workflow gap’. These updates are a strain on the user who must
perform them by hand, but are not enough of a strain to warrant a developer writing a special-
ized workflow. In this paper we describe the WbE prototype, a system that attempts to narrow the
‘workflow gap’: the workflow processes that are difficult to perform manually, but too expensive or
rare to implement in the workflow system. WbE narrows the workflow gap by allowing developers
to define workflows by example, bypassing the need for complicated workflow or ETL tools. WbE
allows the creation of workflows to automate tasks such as those that can be accomplished with
common form-based database management applications. These tasks include repetitive sequences
of updating, querying, adding, and deleting information from the database. WbE facilitates these
tasks over lists of input data, using exception handling to deal with inputs that vary with respect to
the types of actions that must be performed to complete a task. WbE’s unique access point, watch-
ing the interaction between an application and its database, allows for powerful data manipulation
via easily parameterized SQL. Altogether, WbE gives users the ability to automate certain kinds of
data integration or database workflow tasks in an ad-hoc manner.

An evaluation of the WbE prototype shows that the prototype reduces the time required to
perform simple tasks compared to manually completing the task. If the task contains more than
8 tasks to be performed, WbE is more time efficient than manual updates. A user study indicates
that the mean completion times in the WbE case and the manual case are significantly different
(p < 0.01). In addition, evaluation of the learning algorithm and the execution algorithm indicate
that the algorithms scale reasonably well as the number of input examples increases. Finally,
a deployment of WbE as ‘glue’ between two existing systems shows that WbE can be used to
augment real-world data management systems.
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